

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-user-connections 0.0.1 documentation

Welcome to django-user-connections documentation!

	Intallation

	Configuration
	Extending the UserConnection Model with Model Mixin Hooks

	Using a Custom Model Manager

	Extend the Model

	Examples

	API Reference
	Models

	Mixins

	Managers

	Template Tags

	Constants

	Helper Methods

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Troy Grosfield.
 Last updated on Jan 27, 2014.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-user-connections 0.0.1 documentation

Intallation

Install the app:

pip install django-user-connections

 Copyright 2014, Troy Grosfield.
 Last updated on Jan 27, 2014.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-user-connections 0.0.1 documentation

Configuration

Extending the UserConnection Model with Model Mixin Hooks

There are times when a generic 3rd party model doesn’t quite give you all the functionality you’d like. Things like project specific settings or adding helper functions like:

def get_absolute_url(...)

This app give you the ability to add a mixin to the UserConnection model to alter it’s behavior.

Creating the Model Mixin

Create the mixin you want to apply to the UserConnection model:

my_user_connection_app/models.py
from django.db import models

class AbstractUserConnectionMixin(models.Model):
 """The abstract user connection model to add functionality to the
 UserConnection's model.
 """

 class Meta:
 abstract = True

 def get_absolute_url(self):
 return reverse('my_user_connection_url_name', args=[self.id])

 def my_new_method(self):
 # do something with the user connection object
 return 'works'

Configuring the Mixin

In your django settings.py file, include the USER_CONNECTION_MODEL_MIXIN that points to your user connection model mixin:

USER_CONNECTION_MODEL_MIXIN = 'my_user_connections_app.AbstractUserConnectionMixin'

Using the New Model

Now that the mixin has been created and configured, let’s use it:

>>> from django_user_connections.models import UserConnection
>>> n = UserConnection()
>>> n.my_new_method()
'works'

Using a Custom Model Manager

There are also times when you want to customize a model manager, but don’t want to create another concrete implementation or proxy model. Here’s how you extend or override the object manager model.

Creating the Model Manager

Create the manager you want to user for the UserConnection model:

my_user_connection_app/managers.py
from django_user_connections.managers import UserConnectionManager

class MyUserConnectionManager(UserConnectionManager):
 """Manager for overriding the UserConnection's manager."""

 def my_new_manager_method(self):
 return 'works'

Configuring the Manager

In your django settings.py file, include the USER_CONNECTION_MANAGER that points to user connection manager you want to use for the project:

USER_CONNECTION_MANAGER = 'my_user_connections_app.managers.MyUserConnectionManager'

Using the New Manager

Now that the manager has been created and configured, let’s use it:

>>> from django_user_connections.models import UserConnection
>>> n = UserConnection.objects.my_new_manager_method()
'works'

Extend the Model

If all this configuration still isn’t to your liking, then you can simply extend the AbstractUserConnection model:

my_user_connection_app/models.py

from django_user_connections.models import AbstractUserConnection

class MyUserConnection(AbstractUserConnection):
 """Your concrete implementation of the user connection app."""
 # Do your stuff here

 Copyright 2014, Troy Grosfield.
 Last updated on Jan 27, 2014.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-user-connections 0.0.1 documentation

Examples

Below are some basic examples on how to use django-user-connections:

>>> from django.contrib.auth import get_user_model
>>> from django_user_connections.models import UserConnection
>>>
>>> User = get_user_model()
>>> user_1 = User.objects.create_user(username='hello')
>>> user_2 = User.objects.create_user(username='world')
>>>
>>> conn = UserConnection.objects.create(created_user=user_1,
... with_user=user_2)
>>> conn.status
'PENDING'
>>> user_connection = UserConnection.objects.get_for_users(user_1=user_1,
... user_2=user_2)
>>> conn == user_connection
True

 Copyright 2014, Troy Grosfield.
 Last updated on Jan 27, 2014.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-user-connections 0.0.1 documentation

API Reference

Models

Mixins

Forms

Views

Managers

Template Tags

	
django_user_connections.templatetags.user_connection_tags.get_connected_user(user_connection, auth_user)[source]

	Gets the user the authenticated user is connected with.

Constants

	
class django_user_connections.constants.Status[source]

	The different status’s a user connection can be in.

	Field ACCEPTED:	an accepted and current user connection

	Field DECLINED:	a declined user connection. This connection was never in an
ACCEPTED state, or active.

	Field PENDING:	the user connection is pending and waiting on a response from
the user.

	Field INACTIVE:	represents a user connection for two users that was once
accepted and is no longer.

Helper Methods

	
django_user_connections.get_user_connection_model()[source]

	Return the UserConnection model that is active in this project.

This is the same pattern user for django’s “get_user_model()” method. To
allow you to set the model instance to a different model subclass.

 Copyright 2014, Troy Grosfield.
 Last updated on Jan 27, 2014.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	django-user-connections 0.0.1 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 django_user_connections	

 	
 	
 django_user_connections.constants	

 	
 	
 django_user_connections.templatetags.user_connection_tags	

 Copyright 2014, Troy Grosfield.
 Last updated on Jan 27, 2014.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	django-user-connections 0.0.1 documentation

Index

 D
 | G
 | S

D

 	

 	django_user_connections (module)

 	django_user_connections.constants (module)

 	

 	django_user_connections.templatetags.user_connection_tags (module)

G

 	

 	get_connected_user() (in module django_user_connections.templatetags.user_connection_tags)

 	

 	get_user_connection_model() (in module django_user_connections)

S

 	

 	Status (class in django_user_connections.constants)

 Copyright 2014, Troy Grosfield.
 Last updated on Jan 27, 2014.
 Created using Sphinx 1.2.

 _modules/django_user_connections/templatetags/user_connection_tags.html

 Navigation

 		
 index

 		
 modules |

 		django-user-connections 0.0.1 documentation »

 		Module code »

 		django_user_connections »

 Source code for django_user_connections.templatetags.user_connection_tags

-*- coding: utf-8 -*-
from django import template

register = template.Library()

@register.filter
[docs]def get_connected_user(user_connection, auth_user):
 """Gets the user the authenticated user is connected with."""
 if not user_connection:
 return None

 return user_connection.get_connected_user(auth_user)

 © Copyright 2014, Troy Grosfield.
 Last updated on Jan 27, 2014.
 Created using Sphinx 1.2.

_static/plus.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		django-user-connections 0.0.1 documentation »

 All modules for which code is available

		django_user_connections

		django_user_connections.constants

		django_user_connections.templatetags.user_connection_tags

 © Copyright 2014, Troy Grosfield.
 Last updated on Jan 27, 2014.
 Created using Sphinx 1.2.

_modules/django_user_connections/constants.html

 Navigation

 		
 index

 		
 modules |

 		django-user-connections 0.0.1 documentation »

 		Module code »

 		django_user_connections »

 Source code for django_user_connections.constants

-*- coding: utf-8 -*-

[docs]class Status():
 """The different status's a user connection can be in.

 :field ACCEPTED: an accepted and current user connection
 :field DECLINED: a declined user connection. This connection was never in an
 ACCEPTED state, or active.
 :field PENDING: the user connection is pending and waiting on a response from
 the user.
 :field INACTIVE: represents a user connection for two users that was once
 accepted and is no longer.
 """
 ACCEPTED = 'ACCEPTED'
 DECLINED = 'DECLINED'
 PENDING = 'PENDING'
 INACTIVE = 'INACTIVE'
 CHOICES = (
 (ACCEPTED, 'Accepted'),
 (DECLINED, 'Declined'),
 (PENDING, 'Pending'),
 (INACTIVE, 'Inactive'))

 © Copyright 2014, Troy Grosfield.
 Last updated on Jan 27, 2014.
 Created using Sphinx 1.2.

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/down.png

apireference.html

 Navigation

 		
 index

 		
 modules |

 		
 previous |

 		django-user-connections 0.0.1 documentation »

API Reference

Models

Mixins

Forms

Views

Managers

Template Tags

		
django_user_connections.templatetags.user_connection_tags.get_connected_user(user_connection, auth_user)[source]

		Gets the user the authenticated user is connected with.

Constants

		
class django_user_connections.constants.Status[source]

		The different status’s a user connection can be in.

		Field ACCEPTED:		an accepted and current user connection

		Field DECLINED:		a declined user connection. This connection was never in an
ACCEPTED state, or active.

		Field PENDING:		the user connection is pending and waiting on a response from
the user.

		Field INACTIVE:		represents a user connection for two users that was once
accepted and is no longer.

Helper Methods

		
django_user_connections.get_user_connection_model()[source]

		Return the UserConnection model that is active in this project.

This is the same pattern user for django’s “get_user_model()” method. To
allow you to set the model instance to a different model subclass.

 © Copyright 2013, Troy Grosfield.
 Last updated on Dec 23, 2013.
 Created using Sphinx 1.1.3.

_modules/django_user_connections.html

 Navigation

 		
 index

 		
 modules |

 		django-user-connections 0.0.1 documentation »

 		Module code »

 Source code for django_user_connections

-*- coding: utf-8 -*-
from django.core.exceptions import ImproperlyConfigured

[docs]def get_user_connection_model():
 """Return the UserConnection model that is active in this project.

 This is the same pattern user for django's "get_user_model()" method. To
 allow you to set the model instance to a different model subclass.
 """
 from django.conf import settings
 from django.db.models import get_model

 if not hasattr(settings, 'USER_CONNECTION_MODEL'):
 from .models import UserConnection
 return UserConnection

 try:
 app_label, model_name = settings.USER_CONNECTION_MODEL.split('.')
 except ValueError:
 raise ImproperlyConfigured("USER_CONNECTION_MODEL must be of the form "
 "'app_label.model_name'")

 user_connection_model = get_model(app_label, model_name)

 if user_connection_model is None:
 raise ImproperlyConfigured("USER_CONNECTION_MODEL refers to model '%s' "
 "that has not been installed" %
 settings.USER_CONNECTION_MODEL)

 return user_connection_model

 © Copyright 2014, Troy Grosfield.
 Last updated on Jan 27, 2014.
 Created using Sphinx 1.2.

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-user-connections 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Troy Grosfield.
 Last updated on Jan 27, 2014.
 Created using Sphinx 1.2.

_static/down-pressed.png

_static/up-pressed.png

_static/minus.png

_static/comment-bright.png

_static/comment-close.png

